Global spectral analysis of multi-level time integration schemes: Numerical properties for error analysis
نویسندگان
چکیده
An analysis is reported here for three-time level integration methods following the global spectral analysis (GSA) described in High Accuracy Computing Methods , T.K. Sengupta, Cambridge Univ. Press, USA. The focus is on the second order Adams–Bashforth (AB2) and the extrapolation in time (EXT2) methods. Careful distinction is made for the first time step at t = 0 by either Euler forward or four-stage, fourth order Runge–Kutta (RK4) time schemes. The latter is used to solve a benchmark aeroacoustic problem. Several one-dimensional wave propagation models are analyzed: pure advection and advection-diffusion equations. Various spatial discretizations are discussed, including Fourier spectral method. Attention is paid to the presence of physical and numerical modes as noted in the quadratic equation obtained from the difference equation for the model 1D convection equation. It is shown that AB2 method is less stable and accurate than EXT2 method, with respect to numerical dissipation and dispersion. This is true for the methods, in which the physical mode dominates over the numerical mode. Presented analysis provides useful guide to analyze any three-time level methods. © 2017 Elsevier Inc. All rights reserved.
منابع مشابه
A numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملNonlinear Numerical Integration Scheme in Strain Space Plasticity
Strains are applied to the integration procedure in nonlinear increments todecrease the errors arising from the linearization of plastic equations. Two deformationvectors are used to achieve this. The first vector is based on the deformations obtained bythe first iteration of the equilibrium step, and the second is acquired from the sum of thesucceeding iterations. By applying these vectors and...
متن کاملThreshold F-policy and N-policy for multi-component machining system with warm standbys
The integration of marketing and demand with logistics and inventories (supply side of companies) may cause multiple improvements; it can revolutionize the management of the revenue of rental companies, hotels, and airlines. In this paper, we develop a multi-objective pricing-inventory model for a retailer. Maximizing the retailer's profit and the service level are the objectives, and shorta...
متن کاملAccuracy Analysis of Time Integration Schemes for Stiff Multiscale Problems
In the context of multiscale computations, techniques have recently been developed that enable microscopic simulators to perform macroscopic level tasks (equation-free multiscale computation). The main tool is the so-called coarse-grained time-stepper, which implements an approximation of the unavailable macroscopic time-stepper using only the microscopic simulator. Several schemes were develop...
متن کاملStrongly stable multi-time stepping method with the option of controlling amplitude decay in responses
Recently, multi-time stepping methods have become very popular among scientist due to their high stability in problems with critical conditions. One important shortcoming of these methods backs to their high amount of uncontrolled amplitude decay. This study proposes a new multi-time stepping method in which the time step is split into two sub-steps. The first sub-step is solved using the well-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 304 شماره
صفحات -
تاریخ انتشار 2017